Study of Natural Ventilation in Buildings with Large Eddy Simulation

نویسندگان

  • Yi Jiang
  • Qingyan Chen
چکیده

With the discovery of many economic, environmental, and health problems in sealed and mechanically ventilated buildings, the concept of natural ventilation has been revived. "Buildings that breathe" have become more and more desired by ordinary people and architects. Although natural ventilation is conceptually simple, it is difficult to design and control. At present, methods to study natural ventilation are either inaccurate or costly. This study aims at solving these problems by using large eddy simulation (LES). In LES, a three-dimensional, time-dependent method, the contribution of the large, energy-carrying structures is computed directly and only the smallest scales of turbulence are modeled. This investigation has identified a filtered dynamic subgrid-scale model of LES to study natural ventilation. The experimental data from a wind tunnel, a full-scale test chamber, and other research data have been used to validate the LES program. Methods have been developed to solve the problems encountered in validating LES models for natural ventilation studies. Studying the characteristics of different indoor and outdoor airflows helps to identify the best SGS model for those flows. By comparing the results of using large and small computational domains, an appropriate domain size is recommended to save computing time. It is also found that simulating the transient properties of incoming wind, such as the principal frequency of the turbulent fluctuations, influences the pressure distributions around buildings. The mechanism of natural ventilation is investigated using the numerical and experimental results. The fundamental impact of turbulence characteristics on ventilation rate is discussed and a new definition to calculate the ventilation rate is introduced. The distributions of velocities, pressures, temperature and energy spectra, and the computed ventilation rates, suggest that natural ventilation performance is significantly affected by thermal conditions and geometry of a building. LES provides the best tool to predict the effects under those conditions. Finally, with the implementation of a Lagrangian particle model, LES is applied to compute particle dispersion in buildings, which provides valuable information to improve indoor air quality. Good results were found for particles larger than 10 micrometers. Further work is needed for smaller particles. Thesis Supervisor: Qingyan Chen Title: Associate Professor of Building Technology

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of fluctuating wind direction on cross natural ventilation in buildings from large eddy simulation

A large eddy simulation (LES) program with the Smagorinsky subgrid-scale model has been used to study cross natural ventilation in buildings, which has experimental data available from on-site measurements and a wind tunnel. Since natural wind changes direction over time, it is hard to reproduce this effect in a conventional wind tunnel where the “wind” direction is fixed. There are discrepanci...

متن کامل

Study of natural ventilation in buildings by large eddy simulation

Natural ventilation in buildings can create a comfortable and healthy indoor environment, and can save energy used in the mechanical ventilation systems. Two subgrid-scale models of large eddy simulation (LES), a Smagorinsky subgrid-scale (SS) model and a Filtered dynamic subgrid-scale (FDS) model, have been used to study airflow in buildings with natural ventilation. It was found that, for ful...

متن کامل

A New Empirical Model for Predicting Single-Sided, Wind-Driven Natural Ventilation in Buildings

Prediction of single-sided natural ventilation is difficult due to the bi-directional flow at the opening and the complex flow around buildings. A new empirical model was developed that can predict the mean ventilation rate and fluctuating ventilation rate due to the pulsating flow and eddy penetration of single-sided, wind-driven natural ventilation in buildings. The governing equation is base...

متن کامل

Buoyancy-Driven Single-Sided Natural Ventilation in Buildings with Large Openings

Full-scale experimental and computational fluid dynamics (CFD) methods were used to investigate buoyancy-driven single-sided natural ventilation with large openings. Detailed airflow characteristics inside and outside of the room and the ventilation rate were measured. The experimental data were used to validate two CFD models: Reynolds averaged Navier-Stokes equation (RANS) modeling and large ...

متن کامل

Natural Ventilation: Analysis of Indoor Airflow in an Assumed Cubic Building with Opposite Openings by CFD Investigations

The natural ventilation is an easy way to exchange the indoor polluted warm air with outdoor fresh air. The wind power injects outdoor fresh air into the building. A good indoor air current and subsequently a proper exhaust depend on the openings’ conditions and their situations. A serious architectural question is under what conditions of the openings the wind-cross ventilation can be effectiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011